B. Tech III Year I Semester

JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS) PULIVENDULA

19AME65b- PROGRAMMING OF ROBOT AND ITS CONTROL

(Open Elective - II)

L T P C 3 0 0 3

Course Objectives: The objectives of the course are to make the students learn about

- Learn the fundamental concepts of industrial robotic technology.
- Apply the basic mathematics to calculate kinematic and dynamic forces in robot manipulator.
- Understand the robot controlling and programming methods.
- Describe concept of robot vision system.

UNIT - 1: Fundamentals of Robots:

10 Hrs

Introduction, definition, classification and history of robotics, robot characteristics and precision of motion, advantages, disadvantages and applications of robots.

Learning Outcomes:

At the end of this unit, the student will be able to

• Outline the advantages, disadvantages and applications of robot.

L2

• Compare the types of robot manipulators based on applications.

L2

UNIT - II: Robot Actuators And Feedback Components:

10 Hrs

Actuators, Pneumatic, Hydraulic actuators, Electric & Stepper motors, comparison. Position sensors - potentiometers, resolvers, encoders - velocity sensors, Tactile sensors, Proximity sensors.

Learning Outcomes:

At the end of this unit, the student will be able to

• Compare the types of actuators used in robot manipulator.

1.2

• List out the various types of robots and feedback components.

L2

UNIT - III: Robot Programming

10Hrs

Methods of programming - requirements and features of programming languages, software packages, problems with programming languages. VAL, RAIL, AML, C, C++.

Learning Outcomes:

At the end of this unit, the student will be able to

List out the various methods of robot programming

1.2

• Explain the requirements and features of programming

L2

UNIT – IV: Control of Manipulators:

8 Hrs

Open- and close-loop control, the manipulator control problem, linear control schemes, characteristics of second-order linear systems, linear second-order SISO model of a manipulator joint, joint actuators, partitioned PD control scheme, PID control Scheme, computer Torque control, force control of robotic manipulators, description of force-control tasks, force control strategies, hybrid position/force control, impedance force/torque control.

Learning Outcomes:

At the end of this unit, the student will be able to

• Explain the basic concepts of robot controlling systems.

L2

• Outline PD and PID control schemes.

1.2

• Use the force control strategies to determine the forces in robot.

L3

• Explain the force control and torque control techniques.

L2

Mechanical Engineering Department,
Mechanical Engineering of Engineering,
JNTUA College of 516 390,
JNTUA PULIVENDULA - 516 390,

Page 1 of 2

UNIT - V: Robot Vision:

8 Hrs

Introduction, architecture of robotic vision system, image processing, image acquisition camera, image enhancement, image segmentation, imaging transformation, Camera transformation and calibrations, industrial applications of robot vision.

Learning Outcomes:

At the end of this unit, the student will be able to

	The of this diving the bonders with a second	
•	Identify the components of robot vision system.	L3
•	Explain the concept of image enhancement, segmentation and transformation.	L2
•	List the various components of robot vision system.	L1
•	Illustrate the industrial applications of robot vision system.	L2

Text Books:

- 1. Mikell P. Groover and Mitchell Weiss, Roger N. Nagel, Nicholas G.Odrey, Industrial Robotics Mc Graw Hill, 1986.
- 2. R K Mittal and I J Nagrath, Robotics and control, Illustrated Edition, Tata McGraw Hill India 2003..

Reference Books:

- 1. Saeed B. Niku, Introduction to Robotics Analysis, System, Applications, 2nd Edition, John Wiley & Sons, 2010.
- 2. H. Asada and J.J.E. Slotine, Robot Analysis and Control, 1st Edition Wiley- Interscience, 1986.
- 3. Robert J. Schillin, Fundamentals of Robotics: Analysis and control, Prentice-Hall Of India Pvt. Limited, 1996.
- 4. Mohsen shahinpoor, A robot Engineering text book, Harper & Row Publishers, 1987.
- 5. John.J.Craig Addison, Introduction to Robotics: Mechanics and Control, Wesley, 1999.
- 6. K.S. FU, R.C. Gonzalez and C.S.G Lee, Robotics: Control, sensing, vision, and intelligence. Mc Graw Hill, 1987.
- 7. Richard D. Klafter, Thomas Robotic Engineering an integrated approach, PHI publications 1988.

Course Outcomes:

At the end of this Course the student will be able to

•	Explain fundamentals of Robots.	L2
•	Apply kinematics and differential motions and velocities.	L3
•	Demonstrate control of manipulators.	L2
•	Understand robot vision.	L2
•	Develop robot cell design and programming.	L3